Remarks on Global Existence of Classical Solution to Multi-dimensional Compressible Euler-poisson Equations with Geometrical Symmetry
نویسنده
چکیده
We give a necessary and sufficient condition for the global existence of the classical solution to the Cauchy problem of the compressible Euler-Poisson equations with radial symmetry. We introduce a new quantity which describes the balance between the initial velocity of the flow and the strength of the force governed by Poisson equation.
منابع مشابه
Global Entropy Solutions in L∞ to the Euler Equations and Euler-poisson Equations for Isothermal Fluids with Spherical Symmetry
GLOBAL ENTROPY SOLUTIONS IN L∞ TO THE EULER EQUATIONS AND EULER-POISSON EQUATIONS FOR ISOTHERMAL FLUIDS WITH SPHERICAL SYMMETRY ∗ GUI-QIANG CHEN† AND TIAN-HONG LI† Abstract. We prove the existence of global entropy solutions in L∞ to the multidimensional Euler equations and Euler-Poisson equations for compressible isothermal fluids with spherically symmetric initial data that allows vacuum and ...
متن کاملConvergence of Shock Capturing Schemes for the Compressible Euler-poisson Equations
We are concerned with approximate methods to construct global solutions with geometrical structure to the compressible Euler-Poisson equations in several space variables. A shock capturing numerical scheme is introduced to overcome the new difficulties from the nonlinear resonance of the system and the nonlocal behavior of the source terms. The convergence and consistency of the shock capturing...
متن کاملLarge Time Wkb Approximation for Multi-dimensional Semiclassical Schrödinger-poisson System
We consider the semiclassical Schrödinger-Poisson system with a special initial data of WKB type such that the solution of the limiting hydrodynamical equation becomes time-global in dimensions at least three. We give an example of such initial data in the focusing case via the analysis of the compressible Euler-Poisson equations. This example is a large data with radial symmetry, and is beyond...
متن کاملGlobal Well-posedness of Compressible Bipolar Navier–Stokes–Poisson Equations
We consider the initial value problem for multi-dimensional bipolar compressible Navier– Stokes–Poisson equations, and show the global existence and uniqueness of the strong solution in hybrid Besov spaces with the initial data close to an equilibrium state.
متن کاملExistence and Nonlinear Stability of Rotating Star Solutions of the Compressible Euler-Poisson Equations
We prove existence of rotating star solutions which are steady-state solutions of the compressible isentropic Euler-Poisson (EP) equations in 3 spatial dimensions, with prescribed angular momentum and total mass. This problem can be formulated as a variational problem of finding a minimizer of an energy functional in a broader class of functions having less symmetry than those functions conside...
متن کامل